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Abstract

The effects of turbulent combustion of detonation products gases in a confined expglestomplored via
laboratory experiments andigh-resolution numerical simulations. The expanded productsrom the
detonation of a TNT charge are rich in C and CO, which act as a fuel. When these hot gases mix tély air,
are oxidized to CQ—thereby releasing 248Zal/g in addition to the 1093Cal/g deposited by the
detonation wave. In this case, the exothermic power is controled by the turbulent mixing rate, rather than by
chemistry. Akinetic law of turbulent combustion isuggested for thiprocess. Pressurgstories from the
numerical simulations were in good agreement with the experimental measurements—demonstrating that the
numerical model contains the fundamental mechanism that controls the exothermic process.

Introduction

Effects of turbulent combustion induced by explosion of a 8t¢gtmdrical charge offNT in a 16.6 3
chamber filled with air, are investigated. The detonation wave in the charge transforms thexptigive
(C;HsN50;) to gaseous products, rich (~20@&ch) incarbon dust and carbon monoxide. Tihetonation

pressure (~210 kb) thereby engendered causes the products to expand dapidly,a blast wave into the
surrounding air. Thénterface between the products and air, being essentially unstable as a consequence of
the strong acceleration induced by the blast wave, evolves into a turbulent mixing layer—a prowassed

by shock reflections from the walls (Fig. 1). Under sedltumstancesapid combustion takes place where

the expanded detonation products play the role of fuel. Its dynamic effect is manifested expehienental
measurement of a 3-bar pressure increase in the chamber, in contrast to a 0.8-barforcae@dl explosion

in nitrogen (Fig. 2). Such pressueahancements are consistevith a “heat of combustion’= 3575 Cal/g

versus dheat of detonation”= 1093 Cal/g, as measured in a bomb calorimeter by Ornélaand imply an
“after-burning energy”= 2482 Cal/g for TNT explosions in air.

Results

The experiments were modeled as turbulent combustion in an unmixed system at large R&eaalkels,
and Damkohler numbefs®¥ The three-dimensional CFD solution was obtained by a high-@deunov
schemé&! using an Adaptive MesRefinement—AMF! to trace the turbulent mixing on theomputational
grid in as much detail as possible (vid. Fig. 1). The calculated pressure histories were agigaydent with
the measurements (vid. Fig. 2)—thereby demonstrating that model faithfully reflects the controlling
mechanism of exothermic energy deposition: turbulent mixing.

The evolution of thecalculated masgraction of fuel consumed by combustion is presented in Fig. 3. It
starts with a finite burning rate (associated with the finite area of the fuel surface) followedelparential
decay. Fuel consumption is well approximated by the exponétifid Function”™ (also known as a Vibe
Function”®):
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where Z(t)=A[1 -(1-¢/T)""'1/(n +1). Regression analysis was used to establish the fitting parantagrs
gave a good approximation to the calculated burning culve 46;n =49; T =300 ms}.



The corresponding burning rate is:

A(=t/1)"e"

X' (A nT) = T Mot 4

(2)
which represents thtinetic Equation” for the turbulent combustion procEss

Conclusions

The results reveal the dynamics of a combustion process in which the exothermic energy deposition is
controlled by fluid-mechanic transpoftonvective mixing) in ahighly-turbulentfield™®, in contrast to the
conventional reaction-diffusion mechanism of laminar flames pagposed by Zel'dovich & Frank-
Kamenetzki! in 1938.

This work was performed under the auspices of the U.S. dept. of Energy at LLNL under contract no. W-
7405-Eng-48.
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Figure 1. AMR simulation of the explosion of a 87%yindrical TNT charge in al6.6-nf chamber
filled with air at atmospheric pressureTNT detonation products (shown iellow), mix with air

(depicted asblue) thereby forming combustion produdiepresented ased). Exothermic cells are
marked bywhite dots. Vorticity contours aregreen (negative) and turquoise (positive), while

dilatation contours arblack
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Figure 2. Over-pressure history from the 3D-AMR simulation (run 1) of a TNT explosion and
combustion in air compared with TNT experiments in air and nitrogen atmospheres.
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Figure 3. Mass-fraction burneds, and burningrate, p', from 3D AMR simulations of turbulent

combustion of TNT products in airA= mesh size,d = initial charge perturbation\ & » are
parameters of the Life Functiox).



